
Information Sciences 342 (2016) 53–80

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

Symbiosis of evolutionary and combinatorial ontology

mapping approaches

Rana Forsati a,1,∗, Mehrnoush Shamsfard b

a Department of Computer, College of Mechatronic, Karaj Branch, Islamic Azad University, Alborz, Iran
b Natural Language Processing (NLP) Research Lab., Faculty of Electrical and Computer Engineering, Shahid Beheshti University,

G. C., Tehran, Iran

a r t i c l e i n f o

Article history:

Received 20 May 2013

Revised 9 December 2015

Accepted 6 January 2016

Available online 13 January 2016

Keywords:

Ontology mapping

Harmony search

Semantic web

a b s t r a c t

The problem of identifying semantically aligned entities in different ontologies known as

ontology mapping is an outstanding research area and lies at the heart of many semantic

applications. The overarching goal of ontology mapping is to discover a valid and com-

prehensive mapping with the aim of maximizing the number of reasonable alignments of

ontological entities. Recently many efforts to automate the ontology mapping have been

carried out, with some problems such as scalability and efficiency still evident. In this

paper, ontology mapping in heterogeneous knowledge bases is formalized as an optimiza-

tion problem, and an efficient method called Harmony Search based Ontology Mapping

(HSOMap) is proposed, that effectively finds a near-optimal mapping for two input on-

tologies. In this approach, we make use of many kinds of rating functions, which are also

called base matchers to evaluate the similarity of entities. Each base matcher captures the

similarity between entities from a different perspective and is able to exploit the avail-

able side information about the entities effectively. Also, a novel weighted harmonic-mean

method is proposed to aggregate different metrics into a single similarity metric among

all pairs of entities from two ontologies. After obtaining the combined similarity metric

between ontological entities, a discrete harmony search algorithm is proposed to extract

the best alignment. To demonstrate the merits and advantages of the HSOMap algorithm,

we conduct a set of experiments on benchmark data sets and compare its performance

to other state-of-the-other methods. Our experimental results demonstrate that applying

harmony search in the context of ontology mapping is a feasible approach and improves

the mapping effectiveness significantly.

© 2016 Elsevier Inc. All rights reserved.

 

 

1. Introduction

The emergence of intelligent information systems resulted in the need for information and knowledge to be represented

in a readable form for machines. Nowadays, semantic web technologies are bringing about a revolutionary change on the In-

ternet where the World Wide Web will not just be based on text-based pages, but those with meaning (semantics) attached
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to them. As the result, ontologies have become the backbone of facilitating the fulfillment of the semantic web vision. How-

ever, in recent years number of ontologies have been developed with different terms or taxonomies, where many of them

describe similar domains and contain overlapping information. The diversity of available ontologies leads to the problem of

ontology heterogeneity [31], which in turn leads to challenging problems in knowledge sharing.

Ontologies in the context of computer science have been formally described by Gruber [27] in 1995 as “an explicit formal

specification of a conceptualization”— a description which has frequently been refined and reinterpreted. Applications may

require using ontologies from different areas or from different views on one area. Moreover, ontology developers may need

to use existing ontologies as the basis for the creation of new ontologies by combining knowledge from different smaller

ontologies or extending accessible ontologies. In each of these cases we need to find the relationships between the entities

in the different ontologies. To this end, scientists came up with the Ontology Mapping (OM) problem (also called aligning

or matching). The overarching goal of the OM is to discover alignments among the semantically related entities of different

ontologies. The OM problem has emerged as a crucial step when information sources are being integrated in order to be

used for various tasks, such as ontology merging, data translation, query answering or navigation on the web of data [48]. As

a result, ontology mapping can be considered as one of the key technologies for efficient knowledge exchange and successful

understanding of semantic web. This is precisely the problem that has been addressed in this paper. So far, even though

researchers have been working on ontology mapping for quite a long time and have solved some conflicts, developing high

quality mapping systems is still a challenging issue.

In general, finding a unique best alignment among ontologies is hard or even impossible to accomplish where ontologies

with tens of thousands of concepts are common. This is due to the fact that ontology mapping suffers from exponential

running time that limits its applicability (except for small ontologies). More precisely, mapping two ontologies in polynomial

running time is impossible as the problem is proven to be MAX SNP-hard [3]. To alleviate this computational burden, a

variety of heuristic methods for automatic mapping of ontologies have been proposed that differ on their internal model or

processing of the required information. These different techniques can broadly be classified into four major categories: string

similarity-based, background knowledge-based, structure-based, and combinatorial approaches [18]. The main difficulty in

applying these methods is that the searching process is computationally burdensome due to the combinatorial nature of the

problem. Therefore, devising efficient searching methods will significantly improve the performance of the mapping process.

Evolutionary algorithms such as genetic algorithm (GA) [40,45,55] and particle swarm optimization (PSO) [4] are high-

level general procedures that coordinate simple heuristics and rules to find good approximate solutions for computationally

difficult combinatorial optimization problems. Interestingly, evolutionary algorithms (EAs) can be used to perform the search

for finding the best matching more efficiently and in a reasonable amount of time. In the context of ontology mapping,

results of [4] have identified EAs as a promising technique and have shown that the EAs are the most reasonable methods

that are able to obtain higher accuracy compared to other approaches as well as improve the robustness of the typical

algorithms used for the same purpose.

The non-exhaustive nature of the search performed by EAs makes them suitable to be combined with combinatorial tech-

niques in ontology mapping. The evolutionary methods provide at the same time a reasonable accuracy, as well as a unique

scheme of algorithm when applied to different problems. The symbiosis between EAs and combinatorial ontology mapping

is introduced in this paper by using a natural symbiosis of combinatorial ontology mapping techniques and harmony search

(HS) algorithm [20,22–24,28,42,56]. The HS algorithm is a meta-heuristic optimization method imitating the music impro-

visation process, where musicians improvise the pitch of their instruments searching for a perfect state of harmony. Since

its inception, over the last few years, the HS algorithm has been vigorously applied to tackle the practical optimization

problems in discrete or continuous spaces [19,28,50,57].

A remarkable strength of the HS algorithm hinges on its capability in achieving a good trade-off between exploration

and exploitation that makes it more appropriate for optimization problems with complex solution spaces (e.g., combina-

torial) such as ontology mapping. Additionally, in contrast to single-point search-based algorithms such as GA in which a

unique solution is generated at each iteration, the HS algorithm maintains a set of solutions in harmony memory which

evolve at each iteration. Therefore, HS provides an efficient and natural way for exploring the search space and obtaining an

acceptable solution. However, when applied to the ontology mapping problem, there are a few issues that require careful

consideration including: (i) how to formalize the problem so that it can capture different kinds of mapping cardinalities, (ii)

how to take into account the discrete nature of the OM problem in exploring the solution space, and (iii) how to make an

efficient implementation of the system to ensure its scalability to large ontologies. The overarching goal of this paper is to

address these issues by presenting an efficient algorithm based on the symbiosis between HS and combinatorial mapping

methods.

Summary of contributions. The present paper appears to be the first to investigate the symbiosis between HS and combi-

natorial methods for the ontology mapping problem. In particular, we make the following key contributions:

• We formalize the ontology mapping problem as an optimization problem. Specifically, discovery of mapping between two

ontologies is cast as finding the matching with the highest global fitness value rooted in a properly designated objective

function.

• We exploit a combinatorial technique to extract the similarity matrix from different similarity measures. A novel param-

eterized weighted harmonic-mean method to aggregate different similarities into a single similarity is also proposed. The

extracted similarity matrix approaches as an appropriate fitness function to guide the search process in the HS algorithm.
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• We propose a novel framework called Harmony Search based Ontology Mapping (HSOMap) to conduct ontology map-

ping by running several processing passes: (i) multi-strategy execution in which each decision independently finds the

mapping; (ii) strategy combination in which the mappings of the independent decisions are combined; and (iii) mapping

discovery in which some mechanisms are used to discover the best mapping based on the combined rules.

• We also conduct an exhaustive empirical evaluation of the proposed framework and investigate its performance on dif-

ferent benchmark ontologies. In particular, we show that the proposed HSOMap method can be used to efficiently solve

the OM on large ontologies.

Outline. This paper is organized as follows. In Section 2 we survey the existing methods. Section 3 provides a formal defini-

tion of the ontology mapping problem along with the explanation of the HS algorithm- particularly the aspects necessary to

understand our ontology mapping approach. Section 4 provides a detailed description of the proposed HSOMap algorithm.

Section 5 discusses the different similarity measures that will be used as the basis for computing the aggregated similarity

between concepts. In Section 6 we formally analyze the time complexity of the proposed algorithm. Section 7 presents the

data sets used in our experiments, an empirical study of the effects of the HS parameters on the convergence behavior of

the HSOMap algorithm, and the performance evaluation of the proposed algorithm compared to other baseline algorithms.

Finally, Section 8 summarizes the main conclusions of this work and discusses few directions as future work.

2. More related work

Before discussing the detailed description of the HSOMap algorithm, we would like to draw connections to and put our

work in context with some of the more recent work on automatic ontology mapping. A comprehensive overview of the

state-of-the-art work in OM is given in [2,17].

Many successful algorithms have been developed over the past few years to map different semantically related ontolo-

gies. The different approaches can be roughly divided into the following categories.

String similarity methods. The classical and primary techniques for ontology mapping are based on the string similarity

method. The basis of these methods is to calculate the string distance metrics between the labels of two concepts or entities

of the different ontologies [13,32,47,51,52]. A comparison of different mapping methods based on string similarity from dis-

tance functions to token-based functions can be found in [9]. Some examples of string-based methods which are extensively

used in mapping systems are prefix, suffix, edit distance, and n-gram [51].

Background knowledge based approaches. Another family of mapping methods involve utilization of background knowl-

edge or synonyms about ontologies. In these methods, usually one or more linguistic resources in the form of a lexicon,

dictionary, thesaurus or some standard reference document for a particular domain for identifying the synonym entities is

used. These approaches usually use a common knowledge or a domain-specific thesaurus to match words based on their

linguistic relations [1]. Some approaches use common knowledge thesauri to obtain the meanings of terms used in on-

tologies [7,25,44]. Other approaches use domain-specific thesauri, which usually store some specific domain knowledge. We

note that this kind of data as well as entries with synonym, hypernym and other relations are not available in the common

knowledge thesauri (e.g., proper names) [37].

Structure-based methods. A third approach is based on the structure of the ontologies to be mapped, i.e., the focus is

on ”Is-a” hierarchy, sibling concept, relation and graph nodes. The main idea is that two entities of the source and target

ontologies are similar if they have the same neighbors (structures) and the same attributes [30,32]. This means that the

similarity of the nodes as well as the neighboring ones are of concern.

Combinatorial mapping approaches. The combinatorial mapping approaches are based on a combination of two or more

of the above-mentioned approaches, which take into account the different aspects of the ontologies in order to obtain

better results [1,2]. So far, the achievements of (semi) automatic ontology mapping have been very limited. There are many

challenges in this field that need to be resolved to achieve further progress [11].

Evolutionary algorithms for OM. In [40] a method based on the GA is used to determine the optimal weight configuration

for a weighted average aggregation of various base matchers which is called Genetics for Ontology Alignments (GOAL).

GOAL uses the genetic algorithm in a meta-matching context for optimizing a global alignment function. GOAL does not

directly treat the ontology alignment problem as an optimization problem, but rather serves as a meta optimization. It

tries to optimize only a global function. The algorithm can only provide an optimal weight configuration for alignment

problems, where the optimal solution is already known, because the algorithm requires a reference alignment in order to

evaluate its fitness function. For alignment problems with unknown solutions the system can only serve as a heuristic, if the

optimal weight configuration has been determined for a similar problem with a known solution. In contrast to GOAL, the

GAOM system [55] deals with the ontology alignment problem as an optimization problem. GAOM utilizes a GA, where each

chromosome represents an alignment of two ontologies. Each chromosome is evaluated by a fitness function. In GAOM, the

genetic algorithm is not part of a meta-matcher, but it is only used for the optimization of random pairs of entities from the

two ontologies that represent alignment proposals. Furthermore, the PSO algorithm has been utilized for ontology mapping

in [4], where it is viewed and solved as an optimization problem, to serve; correspondences alignment maximization and

specifying an accurate set of correspondences that each particle is responsible for.
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Table 1

Summary of notations consistently used in the paper and their meaning.

Symbol Meaning

Os, es The source input ontology and an entity from it

ns The number of entities in source ontology

Ot , et The target input ontology and an entity from it

nt The number of entities in target ontology

n � min (ns , nt) The number of decision variables in optimization

M The set of all candidate mappings from Os to Ot

M = (m1, . . . , mn) An instance from M with individual alignments mi, i ∈ {1, 2, . . . , n}
H The harmony memory

nHM The harmony memory size (HMS)

pHMCR The harmony memory consideration rate (HMCR)

pPAR The pitch adjusting rate (PAR)

NHV A solution resulting from improvisation step of HS algorithm

nG The number of generations (iterations) the optimization proceeds

φ : R → R+ A penalty function used to penalize invalid mappings

sim∗ : Os × Ot → [0, 1] A function to measure the similarity between two entities

(∗ indicates the type of measure, i.e., lexical, semantic, or structural)

� : Rk
+ × R

k
+ �→ R+ The similarity aggregation function used to combine the similarity values

extracted from k different measures

F ′ : M �→ R+ The fitness function used to evaluate the performance of a specific mapping between ontologies

 

 

3. Preliminaries

In this section, we describe our setting and the ontology mapping problem more precisely, providing necessary back-

ground and defining notation as needed along with the HS optimization algorithm. Table 1 contains a list of the basic

notations we used throughout the paper.

3.1. Problem statement

The objective of ontology mapping is to find semantic alignments between similar elements2 of two different ontologies

[47]. In this paper, we deal with 1: 1 alignment, i.e., for an entity in the source ontology, we only match at most one entity

from the target ontology. The semantic correspondence between entities is referred to as “ =′′ relationship and elements are

referred to as concepts and properties.

Formally, let us consider a source ontology Os formed by ns entities {esi, i = 1, . . . , ns} in which esi denotes the ith entity

of the source ontology, and a target ontology Ot formed by nt entities {et j, j = 1, . . . , nt} in which etj denotes the jth entity

of the target ontology. The output of an OM algorithm is an alignment between the entities of two ontologies. We represent

the result of a specific mapping method with a set of triplets denoted by

M = {(esi, et j, s) ∈ Os × Ot × R+ : esi is aligned to et j with similarity s},
where each triplet (esi, etj, s) indicates that the element esi is corresponding to the element etj, where esi and etj are named

entities issued from the Os and Ot , respectively, and the mapping holds a similarity measure of s, which is typically normal-

ized in the range [0, 1]. This measure indicates that element esi ∈ Os is aligned to entity et j ∈ Ot with the similarity value

of s.

Let M be the set of all candidate mappings from the source ontology Os to the target ontology Ot . The goal of OM is

to find a mapping M ∈ M such that the aligned entities attain the maximum similarity formulated as an objective function

over the mapping M as will be detailed in later sections. We note that the size of a candidate mapping, i.e., the number of

aligned entities, needs to be maximized simultaneously. The two objectives are aggregated into a single objective function

that represents the overall evaluation of a candidate solution. We denote the optimal mapping by M∗ ∈ M which maximizes

the attained similarity between aligned entities and respects the size of the alignment. We note that finding the optimal

alignment M∗ is a challenging endeavor due to the size of the solution space M and the presence of two contradictory

objectives.

3.2. Preliminary data setup

There are a few preparation steps before deploying the HSOMap algorithm. As in this paper the evaluation of solutions

by an objective function is rooted in different similarity measures, we have to prepare such information in advance. First,

pre-processing of the input ontologies is done to obtain a list of all simple words contained within them, while stop words

are removed. After that, the desired similarity measures according to the combinatorial ontology mapping approach are
2 In this paper, to facilitate the description, we use elements to denote concepts and properties.  
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selected. Then, these measures are calculated for the source and target ontologies. If there is any need to reuse some of

these similarity measures, e.g., in a different combination, it would be easy to access this information without recalculating

the similarities. Therefore, this process is prepared only once for each pair of ontologies and each similarity measure. The

output of the mapping execution phase with k different similarity strategies, ns entities in Os and nt entities in Ot is a k ×
ns × nt cube of predicting values, which is stored for later use in the HSOMap algorithm.

3.3. The harmony search algorithm

One of the popular search methods, which mimics the music improvisation process and is a meta-heuristic optimization

method, is Harmony Search (HS) [24]. Recent years have witnessed a flurry of research on HS focused on solving different

optimization problems, and an interested reader can refer to [22–24,38] for variants of HS algorithm in literature and to [10]

for a simple mathematical analysis of the explorative search behavior of HS. The main steps of the algorithm are as follows:

(i) initialize the problem and algorithm parameters; (ii) initialize the harmony memory; (iii) improvise a new harmony; (iv)

update the harmony memory; and (v) check the stopping criterion. These steps are described in the next five subsections.

3.3.1. Initialize the problem and algorithm parameters

In Step 1, the optimization problem is specified as follows:

min
x∈Rn

f (x)

subject to gi(x) ≤ 0, i = 1, . . . , m

hj(x) = 0, j = 1, . . . , p

xk ∈ [lk, uk] k = 1, 2, . . . , n,

(1)

where f(x) is the objective function, m is the number of inequality constraints, p is the number of equality constraints, and

n is the number of decision variables. The lower and upper bounds for each decision variable are denoted by lk and uk,

respectively. The HS parameters are also specified in this step. These are the harmony memory size nHM ∈ N, or the number

of solution vectors in the harmony memory, the probability of harmony memory considering pHMCR ∈ (0, 1), the probability

of pitch adjusting process pPAR ∈ (0, 1), and the number of improvisations or generations nG ∈ N which can also be used as

stopping criterion. We perform a sensitive analysis to decide the value of the parameters pHMCR, pPAR, and nHM used in the

HS algorithm. The harmony memory, denoted by H, is a memory location where all the solution vectors (sets of decision

variables) are stored. The H is similar to the genetic pool in the GA.

3.3.2. Initialize the harmony memory

In this step, the H matrix is filled with as many randomly generated solution vectors as the nHM:

H =

⎡
⎢⎢⎢⎢⎣

x1
1 x1

2 . . . x1
n−1 x1

n f (x1)

x2
1 x2

2 . . . x2
n−1 x2

n f (x2)
...

...
...

...
...

...

xnHM−1
1

xnHM−1
2

. . . xnHM−1
n−1

xnHM−1
n f (xnHM−1)

xnHM

1
xnHM

2
. . . xnHM

n−1
xnHM

n f (xnHM )

⎤
⎥⎥⎥⎥⎦

The initial harmony memory is generated from a uniform distribution in the ranges [li, ui], where 1 ≤ i ≤ n. This is done

as follows:

x j
i
= li + r × (ui − li), j = 1, 2, . . . , nHM

where r ∼ U(0, 1) and U is a uniform random number generator.

3.3.3. Improvise a new harmony

Generating a new harmony is called improvisation. A new harmony vector (NHV), x′ = (x′
1
, x′

2
, . . . , x′

n) , is generated

based on three rules: (i) memory consideration, (ii) pitch adjustment, (iii) random selection. In the memory consideration,

the value for a decision variable is randomly chosen from the historical values stored in the H with the probability of pHMCR

which is also called the harmony memory consideration rate (HMCR). Every component obtained by the memory consid-

eration is examined to determine whether it should be pitch-adjusted. This operation uses the pitch adjustment rate (PAR)

parameter pPAR, which is the probability of applying the pitch adjustment process. If it happens that the decision variable

x′
i

is to be pitch adjusted, its value becomes x′
i
← x′

i
+ r × b where b is an arbitrary distance bandwidth that captures the

amount of maximum change in pitch adjustment, and r ∼ U(−1, 1). We note that the pitch adjusting process in this for-

mulation only applies to continuous valued optimization problems, and it must be adopted appropriately to handle discrete

valued optimization problems such as OM, which is the focus of current paper. The variables which are not selected for

memory consideration will be randomly chosen from the entire possible range with a probability equal to (1 − pHMCR).

Remark 1. The parameter pHMCR, which varies between 0 and 1, is the rate of choosing one value from the historical values

stored in the H, while (1 − p ) is the rate of randomly selecting one value from the possible range of values. In other

 

 

 

HMCR
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words, pHMCR determines the rate of exploration and exploitation in the course of the optimization process. A high value

for pHMCR, forces the algorithm to mostly stick to the exiting solutions in the H (i.e, exploitation) and consequently leading

to less exploration of the solution space. On the other hand, by choosing a small value for pHMCR the algorithm performs a

random behavior in the solution space (i.e, exploration), hence losing all the information collected during the past rounds

which deteriorates the effectiveness of the algorithm.

3.3.4. Update harmony memory

If the new harmony vector, x′ = (x′
1
, x′

2
, . . . , x′

n), has better fitness function than the worst harmony in the H, the new

harmony is included in the H and the existing worst harmony is excluded from the H.

3.3.5. Check stopping criterion

The HS is terminated when the stopping criterion (e.g., maximum number of improvisations nG) has been met. Other-

wise, Steps 3 and 4 are repeated.

In meta-heuristic algorithms diversification refers to a form of randomization in order to explore the search space ef-

fectively. In the HS algorithm, diversification is essentially controlled by the pitch adjustment and randomization. These are

two subcomponents for diversification, which might be an important factor for the high efficiency of the HS method. The

diversification issue is of more importance if we consider the ontology mapping problem which has a more complex solu-

tion space and requires an efficient way to effectively explore this solution space. If diversification is strong enough, a great

number of zones of the search space may be loosely explored, which will reduce the convergence rate of the algorithm. By

contrast, if diversification is kept low in the algorithm design, there is a significant risk of leaving a fraction of the solution

space unexplored or even producing far-from-optimal solutions due to trapping in local optima.

4. Symbiotic harmony search and combinatorial ontology mapping

In this section, we introduce the HSOMap algorithm based on the symbiosis of the harmony search optimization algo-

rithm and the combinatorial ontology mapping techniques. In this algorithm, the assessment of the established solutions is

rooted in the combinatorial measurements extracted by the combinatorial ontology mapping techniques. Additionally, the

essential building blocks of the HS algorithm, including the fitness function and the adjustment of parameters, are modified

to be determined by these techniques.

The proposed algorithm uses random selection and HS operations to refine the solutions iteratively to boost the accuracy

of mappings. Roughly speaking, the HSOMap approach first measures the similarities of syntactic, structural and linguistic

information of ontologies in a vector space model by using combinatorial approaches obtained from external sources. Next,

it aggregates different similarities according to their predicted performance and adjusts mapping strategies to increase the

performance of the final similarity. Finally, it utilizes the HS algorithm to extract the best solution in the context of ontology

mapping.

The architecture of the proposed algorithm is shown in Fig. 1. The HSOMap consists of two main modules: the combi-

natorial similarity calculator and the HS based mapping extraction. The HSOMap receives as input two ontologies which are

supposed to be mapped. First, the similarity calculation process computes a similarity value between possible pairs of enti-

ties, one from each of the two ontologies. The details of this calculation, including the description of the different attributes

examined for each pair of entities, are provided in Section 5. This process results in several similarity matrices that contain

the similarity scores for each pair of elements in the ontologies. The learnt matrices are passed on to be evaluated by the

modified HS optimization algorithm to extract a mapping that maximizes the desired objective function. The main steps are

outlined below:

1. Pre-processing: This step involves a straightforward algorithm which parses the input ontologies using Jena3 and extracts

their elements to compute similarities. In addition, in this step, the name (labels) of concepts, properties, instances and

context structure messages are extracted from two ontologies, and normalized by replacing underscores with spaces,

splitting at capital letters, removing stop words, stemming, tokenizing, lower casing, eliminating punctuation marks and

hyphens or trailing spaces and tabs.

2. Calculation of similarities by combinatorial approaches: In this step the similarity between each pair of the extracted

elements is calculated by using different strategies. Each strategy only takes on one similarity aspect of two concepts,

such as label similarity, comment similarity, profile similarity and structure similarity to measure the closeness of con-

cepts.

3. Harmony search-based mapping discovery: In this module, HS is used to find the best mapping. The algorithm consists

of an initialization and many improvisation steps to refine the initial solutions. The pitch adjusting process in the original

HS algorithm is also modified according to the requirements of HSOMap. The candidate mapping is optimized by finding

the best combinations of mapped elements. Each iteration includes two sub-stages: similarities computation based on

multiple strategies and HS-based mapping discovery. The process will be carried out until a stopping condition is met.

 

 

3 http://jena.sourceforge.net/  

http://jena.sourceforge.net/
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Fig. 1. The architecture of the proposed HSOMap algorithm for ontology mapping with its main modules for finding a near-optimal alignment between

two input ontologies.

 

 

4. Post-processing: The best mapping generated by the HSOMap may or may not satisfy the constraints imposed on the

desired solution. We note that different restrictions result in different connections between entities such as the cardi-

nality of a property and no circular mapping. Therefore, post-processing must be conducted on the obtained solution to

ensure that it satisfies the imposed restrictions.

The details of these modules, after describing the representation of solutions, are given in the following subsections. 
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4.1. Representation of solutions and their efficient manipulation

The first decision in solving the ontology mapping problem by the HS optimization method is how to represent solutions

in order to apply harmony search operations. In our formulation, each solution in the harmony memory corresponds to a

mapping between two ontologies which is encoded as an array of n � min (ns, nt) elements. To represent this situation we

assign to each row of H a vector consisting of n integer values, where each position in the vector corresponds to an entity

in the source ontology, and its value shows its correspondence chosen among nt elements from the target ontology. The

number of rows denotes the number of different candidate mappings among which we are looking for the best mapping.

To code an ontology mapping, we use hash maps in which keys are entities of the source ontology Os, and entries are

entities of the target ontology Ot . As mentioned before, in this paper only 1: 1 alignments are considered. In other words,

each entity esi ∈ Os corresponds to exactly one entity et j ∈ Ot and vice versa. The hash maps structure helps us to easily

manipulate a one-to-one mapping between entities, with a search of concepts in O(1) time complexity. Entry for each key

is actually the aligned entity of that key in the mapping. Each element in the hash map H(esi) = et j indicates that entity esi

from the source ontology is aligned to the entity etj in the target ontology.

We note that the mappings generated in this way may or may not satisfy the constraints that a valid mapping is re-

quired to satisfy. Therefore, only the mappings which are consistent with the constraints must be inserted into the harmony

memory to ensure the feasibility of solutions in the harmony memory H.

4.2. Initialization

The first step in applying the HS algorithm to the problem addressed here is to initialize the harmony memory H. For

initialization, the harmony memory is filled with as many randomly generated solution vectors as the size of the H (i.e.,

nHM). Each row of the harmony memory is filled by random extraction of one of the elements of the target ontology for

each element of source ontology. Although the HSOMap is not sensitive to the initialization of the H, an intelligent initial-

ization will slightly decrease the convergence time of the algorithm and improve the global convergence time. Thus, we

have improved the HSOMap by proposing two intelligent methods to initialize the H with candidate solutions.

The first strategy is a simple random initialization that uses an optional input mapping containing a set of pre-

determined correspondences to initialize the harmony memory. We note that although the initialization is random, we

need to make sure that every entity of the target ontology Ot appears in the solution once at the most .

In the second strategy, for each entity in the source ontology, the top r ranked corresponding entities in the target

ontology Ot are selected according to the initial similarity measure computed by the lexical similarity between the entities

with a predetermined probability of α, and is set to a random entity from the set of entities in the target ontology with a

probability of 1 − α. Positions are filled with random entity index numbers in order to avoid the local minimum solutions,

which contributes to maintaining the diversity of the population and helps to generate the new feasible individuals. The

corresponding values of those pairs that are not selected, either because their similarity values are lower than the threshold

value or they are not in the top r ranked list, will be filled by null. The chosen pairs are further evaluated by other mapping

strategies in computing the objective function of solutions. For instance, if for an entity in the source ontology, there is an

entity with a similar name in the target ontology, its similarity measure will get a boost, resulting in a change to its rank in

the list. There is a parameter which determines the boost size. This process ensures that most of the search space will be

explored in initial stages, and in the final stages enough fine tuning will be applied to solutions.

4.3. Reparation of generated solutions

As discussed before, the harmony memory H only includes solutions that respect the constraints imposed on the target

alignment and represent a valid mapping between the two ontologies. We call a mapping acceptable if it satisfies the fol-

lowing requirements. First, we need to ensure that a solution has a valid structure. A valid structure is an ontology structure

that does not have any “Isa” or “part of” loops. Also, as in this paper we only consider 1: 1 mappings; each entity in the

source ontology is allowed to be mapped to at most one entity in the target ontology. To ensure these requirements, after

the generation of a solution, we need to either modify the generated solution to satisfy the requirements or exclude it from

the H.

4.4. Improvisation step

In the improvising step, we need a technique to generate a New Harmony Vector (NHV) from all the solution vectors

that are in the H. The new generated solution must inherit as much information as possible from the solution vectors that

are in the H. If the generated solution, which corresponds to a new candidate mapping between two ontologies, consists

mostly or entirely of all of the assignments found in the vectors in the H, it provides good heritability.

The selection of a value for the corresponding element of a source entity is as follows. The index of the corresponding

entity of each source entity in the new solution vector is selected with the probability of pHMCR from the harmony memory

H and with the probability of (1 − pHMCR), which is randomly selected from the set {1,2,. . . ,nt}. After generating the new

solution, the pitch adjusting process is applied.
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We propose a scanning method to generate a new solution. The general mechanism for scanning is to assign a marker

to each row in the harmony memory H as well as to the NHV. The marker for the new vector traverses through all the

positions from left to right, one at a time. In each step, the markers for the rows of the H are updated so that at the time of

selecting a value for the currently marked element in the new vector, the row markers show the possible choices. The two

characterizing features of all scanning procedures are the (row) marker update mechanism and the way in which a value is

chosen from the marked elements.

The marker updating mechanism is as follows. The selection of a pair entity from the target ontology for an entity in the

source ontology is carried out based on two different strategies. In the first strategy, entities are compared according to their

weights. The weight of each element in a mapping is considered as the sum of weights of the pair in which that entity is

mapped to. For every entity in the source ontology, esi, all of the entities in the target ontology are examined in the harmony

memory, and the best pair, which has the highest weight, is selected with the probability of p1
HMCR = (0.1 × pHMCR). In the

second strategy, the entity with maximum frequency in the marked positions in the harmony memory is chosen as the best

possible entity, with a probability of p2
HMCR

= (0.2 × pHMCR). Each entity is selected with a probability of p1
HMCR

and p2
HMCR

from marked elements in the harmony memory. If a matched entity in ontology Ot , et is already assigned to another entity

in the Os, then et is put in a forbidden list. We note that the random assignment is not done in the middle of an iteration

in order to prevent entities of Ot from being assigned to some random entities that can be assigned to other entities later

in the iteration, with better similarity. So this random assignment is postponed until all entities of Os are examined for

mapping entities in Ot . As an example, assume ei ∈ Os should be mapped to e′
i
∈ Ot , but e′

i
was previously mapped by some

entity from Os; if at that time we assign ei to some random entities like e′
j
∈ Ot , it will avoid a possible good mapping of

ei to e′
i

later in the iteration. So this random assignment is postponed until no more assignments are possible. This strategy

seems reasonable because the mapping of a single entity in the NHV is no worse than that of the solutions in harmony

memory. The pair of a source entity is randomly selected from unselected entities of the target ontology with a probability

of (1 − pHMCR).

The value of the ith entity, i.e., ei : i = 1, 2, . . . , ns can be randomly selected from the set of all unselected i

e′
j

: j = 1, 2, . . . , nt with a probability of pRandom (i.e., random selection), or it can be selected from the currently marked

elements in the H with a probability of pMemory (i.e., memory consideration). After generating the new solution, the pitch

adjusting process is applied. The pitch adjustment rate pPAR is originally the rate of moving from the current selected entity

to a neighboring entity. This parameter in the HS algorithm is a very important parameter in fine-tuning the optimized

solution vectors and can be potentially useful in adjusting the convergence rate of the algorithm to the optimal solution.

In contrast to the original HS algorithm and most of its applications, where the HS has been applied to continuous

variable optimization problems, our algorithm uses discrete representation of solutions, and we need to modify the pitch

adjustment process for this type of optimization. In this computation, pPAR is defined as the rate of moving from one entity

to the most probable entity which has the highest value of weight among the other entities. To achieve the best results

during the improvising step, we define three different rates for pitch adjusting as p1
PAR

= (0.6 × pPAR), p2
PAR

= (0.3 × pPAR),

and p3
PAR

= (0.1 × pPAR). These three rates p1
PAR

, p2
PAR

, and p3
PAR

differ in various iterations and are considered as the rates

of moving to the highest similarity score, the second highest similarity score and a previous randomly included entity,

respectively. For each entity ei, whose pair entity is selected from the H, with a probability of p1
PAR

, the current pair entity

of ei is replaced with a new entity of which ei has the maximum similarity value to it according to:

NHV[i] = arg max
j∈{1,2,...,nt }

sim(ei, e j), (2)

where sim(·, ·) gives the similarity between two entities from two different ontologies. The similarity between two entities

can be computed in different ways as will be discussed later.

According to the above definitions, the current entity is replaced with the entity that has the highest similarity score for

that entity in the aggregate weight matrix. For each entity ei, whose pair entity is selected from the H, with a probability

of p2
PAR

, the current pair entity of ei is replaced with a new entity of which ei has the second maximum similarity value to

it according to:

NHV[i] = arg max
j∈{1,2,...,nt }, j 
= j∗

sim(ei, e j), (3)

where j∗ = arg max j∈{1,2,...,nt } sim(ei, e j). For each entity ei, whose pair entity is selected from the H, with a probability of

p3
PAR

, two random entities whose pair entities are selected from the H are selected and their alignments in Ot are substituted

one with the other.

4.5. Evaluation of solutions

The stochastic nature of the technique and the way in which the objective function is converted to a fitness function

are mainly considered the main factors that affect the quality of HS solutions. Furthermore, these two factors can guide the

mapping process to a desirable part of the search space, leading to high quality solutions. Therefore, we can conclude that

the fitness function has a great impact on the outcomes of the algorithm, and it must be designed as accurately as possible.

Let M = (m1, m2, . . . , mn) represent the set of n alignments for a row in the H where mi is the aligned entity from the

target ontology Ot to the ith entity in the source ontology Os. Two different methods for fitness evaluation are considered:
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The first evaluation method is based on the fitness values of each single alignment in the set of alignments, and the second

evaluation strategy is based on the weighted percentage of established alignments between member entities. To this end,

rating functions are used for alignment evaluation, which are aggregated to a single fitness value as the similarity of onto-

logical entities. Let �w = (w1, . . . , wk) be the vector of weights for k similarity measures where wi reflects the influence of

the ith similarity measure. Let �si = (si,1, . . . , si,k) be the vector of similarity values assigned by k different measures to the

alignment mi. For each alignment mi, 1 ≤ i ≤ n, a fitness function f(m) is evaluated as:

f (mi) = �(�si, �w), 1 ≤ i ≤ n, (4)

where �(·, ·) is a similarity aggregation function detailed in Section 7.1.

Assume F (M(Os,Ot )) is a function that returns the fitness of mapping the source ontology Os to the target ontology Ot

based on the alignment M ∈ M. Having computed the different similarity strategies and assigned all possible mapping se-

quences to the input ontology, our goal is to find a solution that maximizes the objective F (M(Os,Ot )) and has the property

that, if the M(Os,Ot ) is a legal solution with best alignments, it attains the maximum similarity between all mappings of

the two ontologies. Also, the level of closeness estimation of an infeasible solution which does not satisfy constraints must

be formulated in F (M(Os,Ot )). By having this property in F (M(Os,Ot )), we are able to lead the convergence to a more

stringent space of valid solutions. According to these properties, the fitness of a mapping M(Os,Ot ) to evaluate solutions is

the average fitness of its correspondences in that mapping solution and is computed by:

F (M(Os, Ot )) = μ × k∑n
i=1 f (mi)

×
n∏

i=1

φ( f (mi) − � f ), mi ∈ M, (5)

where n denotes the number of alignments in M, �f is a specific similarity threshold, μ is a positive real constant for scaling

purposes, φ(z) is a penalty function defined as follows:

φ(z) =
{

rrD

z
i f z > 0

1 − z i f z ≤ 0
(6)

where rD < 1.

Remark 2. It is noted that according to Eqs. (5) and (6), if an alignment has a reasonable similarity value, i.e., f(m) > �f,

then the penalty will be small and proportional to how good the alignment is. When the similarity of an alignment is below

the �f, the penalty will be larger than 1 and proportional to the dissimilarity of the alignment. The parameter rD is a known

weighting factor, which indicates the highest penalty for a violation. For considering each alignment into safe-set, it must

have a higher value than a pre-specified threshold �f.

Typically, by choosing a very small value for �f, the chance of escaping from local optima would be increased, such that

r is a self-adaptation penalty factor, which is the function of the current generation as:

ri = rmin + i

imax
× (rmax − rmin) (7)

where imax is the total number of iteration, i is the number of current iteration, rmin and rmax ∈ [0, 1].

Adaptive penalty functions are favorable due to the fact that they expand the search space and lead to faster convergence

by producing low penalty value in the earlier generations, and increasing the penalty value in later generations, respectively.

Maintaining diversity and helping to generate the new feasible individual is an objective that can be reached in the initial

stage or when the number of iterations is small such that the level of penalty is low. Since distance measures are used to

evaluate correspondences, lower evaluation values denote better correspondences mappings. Therefore, if a good result is

required, iteration increment cannot be helpful since by doing so, the degree of penalty increases as well, which speeds up

the convergence of the algorithm, and the search space may not be searched accurately to find an optimal solution.

As mentioned earlier, another objective in an ontology mapping problem is to maximize the number of alignments in a

mapping [4]. Hence, the goal is for all possible candidate mappings M(Os,Ot ) to identify:

M∗ = min
M∈M

F (M(Os,Ot )), (8)

which is the mapping M which causes F(M(Os,Ot )) to be minimal, and at the same time has the maximum number of

alignments.

By aggregating two objective functions into a single fitness value, representing the overall evaluation of the mapping

known as a parameterized weighted harmonic, which also respects the size of the mapping.

F
′
((M(Os,Ot ))) = (n− | M |) × F (M(Os,Ot ))

λ(n− | M |) + (1 − λ)(F (M(Os,Ot ))
, (9)

where |M| is the number of alignments in solution M.

Maximization of the number of correspondences can be gained in the first part of the sum weighted by λ , through

calculating the number of entities of the smaller ontology that are not part of the mapping M, but the evaluation of M can

be done in the second part. Hence, the best mapping M∗ can be determined according to the following combined objective:

 

 

 



R. Forsati, M. Shamsfard / Information Sciences 342 (2016) 53–80 63
M∗ = arg min
M∈M

F
′
(M(Os,Ot )) (10)

Those sequences of mappings with minimum value are considered to be the best outcome of the above equation. In the

replacement strategy the newly generated solution is substituted with a row in harmony memory, if the locally optimized

vector has a better fitness value than those in the H.

4.6. Parameterized harmonic-mean weighted aggregation

The main feature of HSOMap is its capability in utilizing different similarity measures in guiding the search process of

HS algorithm. In Section 5 the calculation of lexical, semantic and structural similarities among entities of the source and

target ontologies will be discussed. The proposed method produces three matrices for similarity of entities. In order to come

up with a single similarity of an alignment, we examine the acquisition of the overall similarity results by combining these

matrices- a problem which is referred to as similarity aggression.

Similarity aggregation is an important and challenging issue in building ontology mapping systems. In order to come up

with a single evaluation of a correspondence, the various similarity distances need to be combined using an aggregation

strategy � : R
k+ × R

k+ → R+, which takes the similarity values generated by k different measure strategies and the wight

of each measure as input and generates a single similarity value. Aggregating different similarities into a single value is

pervasive in ontology mapping systems that contain multiple individual matchers [39], e.g., COMA [12], Falcon-AO [46],

RiMOM [35,53], and QOM [16], etc. There are many strategies that have been proposed to aggregate different similarities,

out of which one can be selected through system configuration.

In this paper a new parameterized harmonic-mean weighted method to aggregate different similarities is proposed. The

proposed aggregation strategy computes the flexible merging of all similarity measures via harmonic-mean function. In

our proposed evaluation strategy, similarity measures are unequally weighted. The proposed adaptive aggregation method

assigns a higher weight to reliable and important similarity measures and a lower weight to those that fail to map simi-

lar ontologies. We use a parameterized weighted harmonic mean of similarity measures, which emphasize high individual

predicting values and deemphasize low individual predicting values, to represent the combined similarity measure, shown

below:

�(�s, �w) =
∑k

i=1 wi∑k
i=1

ωi

si

, (11)

where �s is the similarity values assigned by k different measures to a mapping m, �w is the weight vector of similarity

measures where wi is the weight assigned to the ith similarity matrix. We use the sigmoid function ϑ: ϑ: [0, 1] → [0, 1] to

transform the original similarity values, defined as follows:

ϑ(y) = 1

1 + e−5(y−ν)
, (12)

where ν is set to 0.5, empirically.

It is widely accepted that weights are useful in such cases to control the contribution of each similarity measure. In our

experiments if two given ontologies are more lexically similar than structurally similar, then the lexical coefficient will hold

a higher value than the structural coefficient.

5. Similarity computation strategies

The fitness of an extracted mapping is computed from the combination of the fitness values of each single correspon-

dence in the candidate mapping. To this end, each correspondence is evaluated according to some rating functions which

are weighted and aggregated to a single fitness value which is used to evaluate the extracted solutions. A rating function is

widely known as a base matcher, which computes a single similarity or distance measure of ontological entities.

The HSOMap fitness function is based on the determination of a family of similarity measures which compute a single

similarity or distance measure of ontological entities. In fact, the quality of the computed mapping depends to a large

extent on the base matchers which are used for evaluating the correspondences. In the evaluation of solutions generated

by the HSOMap algorithm, we utilized a harmonic-mean-weighted strategy to aggregate multiple similarities along different

ontology facets.

This section presents some base matchers, which are currently used as a similarity function. A similarity measure sim :

Os × Ot → [0, 1] is a function which takes two entities es ∈ Os and et ∈ Ot as input and produces a similarity value between

0 and 1. The similarity between two elements depends on the method used to compute it. It is important for the ease of

similarity aggregation that the similarity value is normalized to be between 0 and 1. In the proposed framework, we utilize

string-based, semantic-based (i.e., linguistic-based), and structure-based methods to compute the similarities. The string-and

linguistic-based methods evaluate the given entities by analyzing their names, labels and comments. They consider both the

lexical and linguistic features as terms of comparison. The structure-based method takes into account the structural layout

of the ontologies considered.
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5.1. Lexical based similarity computation

The lexical similarity consists of all the human-readable information provided in an ontology which refers to different

methods of string comparison or edit distances. Three such lexical features are considered in OWL ontologies: the id, the

label, and the comment associated with the entities of ontology.

Lexical based similarity for labels and ids. In the first phase of computing the similarity between the entities, we used the

most intuitive method which exploits the entity name to compute the similarity of entities. Several approaches have been

proposed to conduct the mapping discovery by making use of the entity name [6,14,36]. We used the Levenshtein string-

based similarity measure, where the similarity of any two strings (e.g., rdfs:label(s)) from two ontologies is calculated by

the Levenshtein distance. The Levenshtein measure defines the strings similarity by the minimum number of insertions,

deletions, and substitutions required to transform one string into the other. Since most of the heterogeneity in the test

collection ontologies comes from lexical differences, this measure is appropriate for use.

simLevenshtein(es : Os, et : Ot ) = max

(
0,

min(| es |, | et |) − dis(es, et )

min(| es |, | et |)
)

, (13)

where |es| denotes the length of string es, and dis(es, et) denotes the Levenshtein distance between es and et.

This similarity measure returns a degree of similarity between 0 and 1. The similarity measure of one would suggest that

the two concepts are exactly identical, and a similarity of zero indicates a mismatch. This method considers the number

of changes that must be made to change one string into the other and weighs the number of these changes against the

length of the shortest string of these two. This will lead to an important question as to whether we will possibly identify

the mistakenly identified concepts that have similar spelling, as equivalent. It is entirely possible that such a case might

occur, but the probability of two concepts having a very similar spelling and being in the same domain is very low such

that the advantage of using it overweighs the risks. The HSOMap finds a lexical similarity measure between identifiers of

entities es and et in the same way as with labels.

Lexical base similarity for profile. Basically, as a collection of weighted words, the virtual vector of an entity in an ontology

contains not only the local descriptions (e.g., “rdfs:label(s)”) but also some annotation information to reflect the intended

meaning of the entity such as “rdfs:comment”, and properties and graph structure is exploited to extract the description in-

formation from neighboring entities. Then concepts similarities can be calculated by traditional vector space techniques and

be further used in similarity based approaches for ontology mapping. The similarity of two vectors in two ontologies based

on their local, neighboring and description information, which we called global description of entity, is directly calculated

as the cosine measure between their two representative feature vectors. In this model each profile (i.e., label, comment, and

properties) [39] is considered as a vector in the term-space. Let χ and ψ denote the number of profiles and the number of

terms, respectively. In particular, we have adopted the conventional TF-IDF term weighting model [49] to represent a profile,

in which each profile can be represented as[
t f1. log

(
χ

df1

)
, t f2. log

(
χ

df2

)
, . . . , t fψ . log

(
χ

dfψ

)]
, (14)

where tfi is the frequency of the ith term in the profile and dfi is the number of profiles that contain the ith term. We have

used the Cosine similarity to measure the similarity between two profiles as defined by the following equation:

simprof ile(ps : Os, pt : Ot ) = ps · pt

|ps| × |pt | , (15)

where ps and pt are feature vectors for profile ps and pt, respectively, and |ps| and |pt| are the lengths of the two vectors,

respectively.

Lexical similarity measure calculation. The lexical similarity measure is calculated as the weighted average of the label, id, and

profile similarities. The weights used in this calculation have been experimentally determined as label weight wlabel = 0.5,

id weight wid = 0.3 and profile weight wprof ile = 0.2.

5.2. Semantic similarity measure calculation

The next phase in identifying the similarity between the entities of ontologies is to identify entities (concepts) that are

semantically equivalent to the concept of the source ontology that is already known to the system. These are concepts or

classes that have the same meaning or are equivalent to the concepts already extracted. Lexical based measures ignore the

fact that two entity names with similar meanings might be spelt quite differently.

To identify identical concepts we use the assistance of the WordNet lexical database [41] as the knowledge resource for

computing the similarity. The urgency of this method is that it is still helpful when the name of elements are different but

are linguistically similar [43]. WordNet is a large lexical database organized as a graph. Nouns, verbs, adjectives and adverbs

are grouped into sets of cognitive synonyms (synsets), each expressing a distinct concept. This large lexical database can

be thought of as serving as an agent that is being used to map the two ontologies, and it helps us to identify similar
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concepts. In order to get the meaning of a word in various contexts, synonyms sets (synsets) provided by this dictionary

are used. Before using this external linguistic corpora, the entities must undergo a process of linguistic normalization, such

as tokenization, lemmatization or word extraction as done in the preprocess phase. Although a wide variety of similarities

for WordNet are proposed, after some experimentation we develop a new similarity measure. Assume the two labels being

compared are es and et, belonging to entities, respectively (concepts or properties), the semantic similarity measure between

the labels of es ∈ Os and et ∈ Ot , is then given as:

simSemantic(es, et ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1.0 if es = et

0.95 if es ∈ sysnset(et ) or vice versa

0.0 if es ∈ ant(et )

0.8 × 1
dist(es,et )

if es and et have a hyponymy-hypernymy relation

0.7 × 1
CommonDepth()

if es and et are siblings with common depth less than 5

2×log ρ(LCS(es,et ))
log ρ(es)+log ρ(et )

o.w.

(16)

where synset(et) is the set of synonyms and ant(et) is the set of antonyms of concept et. The similarity measure for synonyms

is set slightly lower than the measure for actual string equality matches, in order to differentiate when the terms are exactly

matched. dist(es, et) is the distance between them in WordNet. This can be done by finding the paths from each sense of es to

each sense of et and then selecting the shortest such path, CommonDepth(), the common word length, in both descriptions of

the words. The final similarity measure synset utilizes the path length of the synset in WordNet. As WordNet is organized

with synsets, we can extract the shortest path of the different word pairs using synsets. Synset similarity measures use

the path length as the similarity measure. According to [15] we employ the depth and the ancestor least common super

concept (LCS) of words. Where LCS is the least common ancestor of es and et in WordNet, ρ(LCS) = count(LCS)/total is the

probability of a randomly selected word occurring in the synset LCS or any sub synsets of it, and total is the number of

words in WordNet.

5.3. Structure similarity measure calculation

Structural similarity provides the potential semantic of ontology structure. The RDF model, a foundation of the seman-

tic web, has the nature of a graph structure. Aside from the root entity, in this graph, each element has its corresponding

super/sub classes. In this section, we define the similarity measures using the structure of ontologies. For the two entities

which came from different ontologies, their matching relationship is bound to be influenced by their super/sub classes. If

the super/sub classes can be matched, the same relationship can be found between the two entities of source and target on-

tology and vice versa. In order to use graphically close concepts, we utilize the parent and child concept label for calculating

the similarity. So the structural similarity of two entities simstructure(es, et) is defined as:

simStructure(es, et ) = simsuper(es, et ) + simsub(es, et )

2
(17)

where simsuper(es, et) and simsub(es, et) is the similarity of their super/sub classes, respectively.

The similarity presented above can handle the similarity of graphical structures. In another view, naturally, two concepts

can be regarded as similar if they are domain/range classes of similar properties. The structural similarity between two

entities comes from their structural feature which also can be computed as:

simStructure(es, et ) =
| |es|

|Os| − |et |
|Ot | |

max
( |es|

|Os| ,
|et |
|Ot |

) (18)

where |e| denotes the depth of the class e from the root and |O| denotes the height of the ontology O.

5.4. Property based measure

For each generated concept mapping we make use of property mapping to refine concept mapping in this measure.

For each generated concept mapping es to et, we check mappings of their properties. We give a penalty for those concept

mappings when their properties do not have the required level of mappings. We calculate a score that indicates the corre-

sponding percentage of mapped properties in all of their properties. After that, we multiply the combined predicting value

of mapping es to et by the score.

6. Time complexity analysis

In this section the time complexity of the HSOMap algorithm is rigorously determined as a function of the size of the

input ontologies. In the first step, for the input ontologies we need to compute k different similarity measures and aggregate

them. Then the number of entities involved and the complexity of the respective similarity measures affect the overall run-

time complexity of the similarity computation step.
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The computational cost of the lexical based measure is dominated by the Levenshtein distance computation module. The

Levenshtein or edit distance of two strings can be found using a dynamic programming algorithm. The time complexity of

this algorithm is O(l1l2), where l1 and l2 are the lengths of the input strings. We note that there are other more efficient

algorithms, such as lazy dynamic programming, which are able to compute the edit distance in a more efficient way. Since

in our application the length of strings attached to ontological concepts are almost constant, for the simplicity of exposition,

we assume that the pairwise similarity between ontological entities has an O(1) time complexity. We note that for other

pairwise comparisons of entities the time complexity is also O(1) due to the fact that retrieving single entities or fixed sets

of entities is independent of the the size and the structure of the ontology they are taken from. As a result, the total time

complexity of computing the similarity matrix based on the lexical information is O(n2), where n denotes the maximum

number of entities in input ontologies.

The time complexity of semantic similarity between two entities is dominated by finding the least common ancestor in

the WordNet between any pair of nodes in the ontologies. For an ontology of size n, the depth of a balanced tree over the

nodes is at most O(log n). A naive idea to find the least common ancestor of two entities would be O(log2n), but we made

an efficient implementation which only suffers from an O(log n) time complexity. The idea is to first find the depth of two

entities in the tree and move the entity with larger depth up in the tree to reach the same depth as the other entity (this

is because the depth of the least common ancestor is less than or equal to the depth of the entity with minimum depth).

Then, we can move up in the tree from both entities, one parent at a time, simultaneously, to hit the least common ancestor.

The time complexity of finding the depth of entities is O(log n), and the time complexity of the second step is O(log n) in

the worst case. This leads to an O(log n) time complexity which is more efficient than the naive O(log2n) complexity for

large-scale ontologies. We note that based on the semantic similarity computation detailed before, the process of traversing

the tree to find the least common ancestor of each pair of entities must be performed for each pair, which leads to an

O(n2log n) time complexity for computing the whole semantic similarity matrix.

The computational complexity of computing the structural similarity between two nodes is O(1) which makes the overall

time complexity of computing the structural similarity matrix to be O(n2). Putting all these together, we can see that the

the overall complexity of the similarity computation step is O(n2 + n2 log n). The aggregation of similarity matrices costs

O(kn2). Therefore, the whole process is dominated by the semantic similarity computation step and has an O(n2log n) time

complexity.

Remark 3. We note that by examining the semantic similarity computation in 16, it turns out that we only need to check

if for any pair of entities, the depth of their corresponding least common ancestor is less than 5. Hence, in the proposed

method for finding the least common ancestor, we usually stop the searching process as long as the least common ancestor

is found in levels lower than 5. Therefore, in reality the algorithm performs much better than its worst case O(n2log n) time

complexity.

We now turn to analyzing the computational complexity of optimization process. The initialization step only takes O(n2)

to initialize the harmony memory. Each improvisation step of the HSOMap requires to generate a new solution. In the

worst case, for each entry of the new solution we might apply the pitch adjusting process which takes O(n) operations,

as the algorithm needs to find the first and second most similar entities to the current entity. Therefore, the worst case

time complexity of the improvisation step gives rises to O(n2). It is remarkable that the true time complexity of impro-

visation step is O(pPAR × n2), which is significantly much better than the O(n2) complexity for the small probabilities

of pitch adjusting process. For nG number of improvisation steps, the optimization step costs O(nGn2). Combining this

with the time complexity of the similarity computation module, the overall time complexity of the HSOMap algorithm

becomes O(n2(nG + log n)).

7. Experimental results and analysis

In this section, we conduct exhaustive experiments to demonstrate the merits and advantages of the proposed algo-

rithm. We performed experiments with several real world data sets with different characteristics. In particular, we aim to

accomplish and answer the following fundamental questions:

1. Model selection: What role do the HS parameters pHMCR, pPAR, nG, and nHM play in the performance of the proposed

algorithm and balancing the exploration and exploitation? What is the best strategy to tune these parameters?

2. Alignment accuracy: How is the quality of obtained solutions on different data sets measured in terms of different

quality measures? Additionally, how effective is the proposed fitness function in guiding the search process towards the

proximity of the optimal solution in the solution space?

3. Convergence analysis: How fast is the proposed algorithm in converging to the best solution?

4. Effectiveness of similarity aggregation: To what extent is the proposed aggregation strategy able to combine different

similarity measures into a single metric?

5. Comparison to existing methods: How well does the HSOMap algorithm perform in comparison to the state-of-the-art

methods on different data sets?

We begin by describing the data sets we have used for experiments and then by discussing the results drawn from initial

experiments using the HSOMap algorithm on these data sets.
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Table 2

The explanation of OAEI benchmark tests.

Data set Name Test sets Descriptions Number of Ontologies

DS1 1XX #101–104 Similar both in label description and hierarchy structure 4

DS2 2XX #201–210 Similar in hierarchy structure but different linguistics in some level 10

DS3 2XX #221–247 Similar in label description but different structure 18

DS4 2XX #248–266 Different in both label description and hierarchy structure 15

DS5 3XX #301–304 Test ontologies are real word ontologies by different institutions 4

 

 

7.1. Data sets and evaluation criterias

In order to evaluate our approach, we used the benchmark tests from the Ontology Alignment Evaluation Initiative

(OAEI)4 ontology mapping campaign which become the primary venue for ontology mapping. The OAEI was started in 2004

with the goal of making it easier for researchers to compare the results of their ontology mapping algorithms. The campaign

holds a contest every year for evaluating ontology mapping technologies and attracts numerous participants. In addition, the

campaign provides uniform test cases for all participants so that the analysis and comparison between different approaches

and different systems is practical.

We would like to emphasize that in some cases results published in the contest are only for parts of the ontologies

and thus may not indicate true performance for the complete realistic ontologies. Among the 52 ontologies provided in

the benchmark data in the domain of bibliography, one is reference ontology, dedicated to the very narrow domain of

bibliography, and the rest are test ontologies. The test data are systematically different derivatives of original ontology, which

are altered by discarding various information that can be exploited by alignment tools in order to evaluate how an algorithm

behaves with missing information. There are different categories of modifications such as removing natural language labels,

comments and structural information in order to determine the strengths and weaknesses of different mapping systems.

More specifically, the test ontologies in the benchmark data can be classified into five groups, as shown in Table 2. The

benchmark test cases have been placed into three categories: 1XX, 2XX, and 3XX test cases. They are grouped into three

sets:

1. Concept test (cases 1XX : 101, 102, …), that explores comparisons between the reference ontology and itself, described

with different expressivity levels.

2. Systematic (cases 2XX) that alters systematically the reference ontology to compare different modifications or different

missing information.

3. Real ontology (cases 3XX), where comparisons with other real world bibliographic ontologies are explored.

In the OAEI ontology mapping campaign, alignment systems are compared using precision, recall and F-measure metrics

[17], which are well-known from information retrieval. Precision is the percentage of correctly discovered alignments in all

discovered alignments, and recall is the percentage of correctly discovered alignments in all correct alignments as defined

below:

Precision = #correct_ f ound_mappings

# f ound_mappings
, (19)

Recall = #correct_ f ound_mappings

#existing_mappings
. (20)

The F-measure is the harmonic mean of precision and recall:

F-measure = 2 ∗ Precision ∗ Recall

Precision + Recall
. (21)

7.2. Baseline algorithms: a comparative analysis

In this section we briefly review the baseline algorithms we intend to compare with the proposed HSOMap algorithm.

1. MapPSO (Ontology Mapping by Particle Swarm Optimization) [4,5]: This algorithm has the same spirit as the method

proposed in this paper, but it utilizes a discrete particle swarm optimization to solve the ontology mapping problem.

Similar to the HSOMap, the core element of MapPSO is the objective function that is used to assess the goodness of

candidate solutions. In particular, each candidate alignment of ontologies is scored based on a weighted sum of qual-

ity measures of the single correspondences and the total number of correspondences. The quality of each individual

correspondence is calculated based on an aggregation of scores from a set of base matchers.
4 http://oaei.ontologymatching.org/2008/.  

http://oaei.ontologymatching.org/2008/
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2. Edna: The Edna is a simple algorithm that is based on the edit distance of the labels and was included by the organizers

of the OAEI contest as a baseline. Each label (such as concept name or property name) is composed of several tokens. In

this strategy, the edit distance between the labels of two entities is calculated. The edit distance estimates the number

of operations needed to convert one string into another.

3. GeRoMe (Generic Role based Meta-model) [33]: GeRoMe implements a framework for the management of models that

allows operators to manipulate, store, and retrieve models. It is based on the analysis and comparison of five popular

meta-models that are widely used in semantic web applications (Relational, EER, UML, OWL, and XML schema). The main

idea behind GeRoMe is to decorate each model element (e.g. an XML schema or a relational schema) with a set of role

objects that represent specific properties of the model element. In the new representation, each model element plays

a set of roles which decorate it with features and act as interfaces to the model element. Roles may be added to or

removed from elements at any time, which enables a very flexible and dynamic yet accurate definition of models. The

flexibility obtained by this representations makes it possible to manage and manipulate different ontologies in an unified

way.

4. TaxoMap [29]: The TaxoMap system has been designed in the setting of query answering in the food risk domain. It

aimed at increasing answers delivered by a web portal thanks to information provided by other sources annotated by

semantic resources. Querying the portal was supported by a global schema exploited by a query interface which had

to be reused without any change. More specifically, the TaxoMap is an alignment tool that aims to discover rich corre-

spondences between concepts. It performs an oriented alignment (from the source to a target ontology) and takes into

account labels and sub-class descriptions. The target ontology is supposed to be well-structured whereas source ontol-

ogy can be a flat list of concepts. TaxoMap makes the assumption that most semantic resources are based essentially

on classification structures. This assumption is confirmed by large scale ontologies which contain rich lexical informa-

tion and hierarchical specification without describing specific properties or instances. To find mappings in this context,

it only uses the following available elements: the labels of concepts in both ontologies and the structure of the target

ontology. Each concept is defined by two elements: a set of labels and subclass relationships. The labels are terms that

describe entities in natural language and which can be an expression composed of several words. A subclass relationship

establishes links with other concepts.

5. CIDER (Context and Inference baseD alignER) [26,54]: The CIDER mapper uses a semantic similarity measure to

compare the concepts of the two input ontologies. This schema-based method combines different elementary tech-

niques, such as linguistic similarities or vector space modeling, to compare the ontological context of each of the in-

volved terms. The discovered correspondences that score below a certain threshold are filtered out of the resultant

alignment.

The CIDER algorithm is considered to be a schema-based system (the opposite of others which are instance-based, or

mixed), because it relies mostly on schema-level input information for performing ontology mapping. The initial purpose

of CIDER was to discover similarities among possible senses of user keywords, in order to integrate them when they

were similar enough (to be later disambiguated and used in semantic query construction). The CIDER method compares

each pair of ontology terms by, firstly, extracting their ontological contexts up to a certain depth (enriched by using

transitive entailment) and, secondly, combining different elementary ontology mapping techniques (e.g., lexical distances

and vector space modeling).

6. SPIDER [8]: The main goal of the SPIDER system is to provide alignments containing not only equivalence mappings but

also a variety of different mapping types (namely, subsumption, disjointedness and named relations). We note that the

large majority of existing matching systems focus on deriving equivalence mappings, which distinguishes SPIDER as a

different system from existing methods. SPIDER combines two concrete subsystems. First, the CIDER algorithm explained

before is used to derive equivalence mappings. Second, this alignment is extended with non-equivalence mappings de-

rived by another system which is referred to as Scarlet. The main focus of SPIDER is on automatic ways of filtering out a

significant part of the incorrect mappings.

7. SAMBO (System for Aligning and Merging Biomedical Ontologies) [34]: SAMBO is a system for matching and merging

biomedical ontologies and assists the user in aligning and merging two biomedical ontologies. It handles ontologies in

OWL and outputs 1:1 alignments between concepts and relations. The system uses various similarity-based matchers,

including structural, terminological, and background knowledge. The results produced by these matchers are combined

based on user-defined weights. Then, filtering based on thresholds is applied to come up with an alignment sugges-

tion, which is further displayed to the user for feedback (approval, rejection or modification). Once matching has been

accomplished, the system can merge the matched ontologies, compute the consequences, and check the newly created

ontology for consistency, etc.

These algorithms could be compared from different viewpoints including similarity metrics, pre-processing, post-

processing, type of alignment, and use of external resources. All these papers were surveyed to determine what lex-

ical metrics were employed and what pre-processing steps were being used (or proposed). For some baseline meth-

ods it was not explicitly mentioned which string similarity metrics had been used and we examined the code for

the alignment algorithm to extract the metrics to the extent it was possible. The results of this survey are shown

in Table 3.
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Table 3

A detailed comparison of the proposed method with the baseline algorithms used in our empirical study. Here, for the lexical metrics in the second row, EM stands for exact match, LD stands for Levenshtein

distance, LS stands for Lin’s similarity, and ED stands for edit distance between two strings. The part-of-speech tagging (PoS-tagging) refers to the problem of assigning syntactic categories to words in a sentence

(see e.g., [21]).

Characteristic Type TaxoMap CIDER SPIDER GeRoMe SAMBO MapPSO HSOMap

Input format Ontologies
√ √

(OWL or RDF)
√ √ √ √ √

XML ✗ ✗ ✗
√

✗ ✗ ✗

Matching

knowledge

Linguistic
√

(LS, EM)
√

(EM, LD)
√

(EM, LD)
√ √

(n-gram, ED)
√

(SMOA, TF-IDF)

Structural
√ √ √ √ √ √ √

Instance matcher ✗
√ √ √ √

✗ ✗

Use of external

dictionary

✗
√

(WordNet)
√

(Web+ Wikipedia)
√

(WordNet) √
(Dictionary+Domain

Thesauri)

√
(WordNet)

√
(WordNet)

Pre-processing Basic Stop words, PoS

tagging,

translation,

synonyms

Normalization,

synonyms

Normalization,

synonyms

Normalization,

synonyms

Tokenization,

stemming

Normalization Stop words, PoS

tagging,

translation,

synonyms

Matching

techniques

Terminological,

structural

Lexical, vector

space, structural

Lexical, vector

space, domain

knowledge

Lexical, structural,

role matcher

Terminological,

structural, domain

knowledge, a

learner matcher

Lexical, structural Lexical, structural
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Table 4

Different scenarios considered for evaluating the impact of dynamic parameters on the performance of

the HSOMap algorithm. For each scenario, we fix three parameters and only vary the remaining param-

eter to examine its influence on the quality of the final solution.

Scenario Fixed parameters Variable parameter Values

I pHMCR = 0.8, pPAR = 0.1, nG = 200 nHM 1, 10, 20, 30, . . . , 150

II nHM = 100, pPAR = 0.1, nG = 200 pHMCR 0.03, 0.08, . . . , 0.93, 0.98

III nHM = 100, pHMCR = 0.98, nG = 200 pPAR 0.05, 0.06, 0.07, 0.08

IV nHM = 100, pHMCR = 0.98, pPAR = 0.05 nG 10, 20, 30, . . . , 290, 300

Fig. 2. The performance of the HSOMap algorithm for different values of the harmony memory size (HMS) on a 101 data set corresponding to Scenario (I)

in Table 4.

 

 

7.3. Empirical study of the impact of dynamic parameters

In this subsection, we investigate the performance of the HSOMap algorithm under different settings of important pa-

rameters, i.e., the harmony memory size nHM, harmony memory considering rate pHMCR, pitch adjusting rate pPAR, and the

total number of improvisation steps nG. The goal is to determine the best setting of these parameters for our empirical

evaluations to achieve the best performance. To this end, we consider different scenarios where in each of them only one

parameter is varied while fixing the values of other parameters. These scenarios are shown in Table 4.

Harmony memory size (nHM). We begin by investigating the impact of the harmony memory size (HMS) on the quality

of solutions generated by the HSOMap algorithm. In Fig. 2, we show the results of the first Scenario (I) in Table 4 for the

HSOMap algorithm. In this experiment, we fix the values of pHMCR = 0.8, pPAR = 0.1, and nG = 200 and change the size of

the harmony memory nHM from 1 to 150 with steps of size 10.

Based on the results in Fig. 2, when the size of the harmony memory is nHM = 100, our algorithm achieves the best

result, making 100 the most suitable value compared to other values. The results also indicate that the bigger the size of

the harmony memory, the better is the chance to start the improving process of the candidate solutions with lower objective

values. This might be due to the fact that the large number of solutions in the H provides more good shift patterns, which

are more likely to be combined into good new solutions.

The other obvious fact that can be inferred from the results in Fig. 2 is that by increasing the size of the harmony mem-

ory above 100, performance of the algorithm declines. This may be due to the fact that during the evolution, information of

high quality shift patterns have been stored and updated in the H. More patterns may contain redundant information, and

thus, do not necessarily contribute to a better performance. Therefore, nHM = 100 is chosen for all tested instances. Note that

when the harmony memory size is nHM = 1, the HSOMap behaves as a local search method, where the pHMCR does not play

a role and the pitch adjusting process assists as a local search. The results also indicate that when we vary the size of the 
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Fig. 3. The performance of the HSOMap algorithm for different values of the harmony memory consideration rate (HMCR) on the 101 data set correspond-

ing to Scenario (II) in Table 4.

 

 

harmony memory between 130 and 150, we can not observe any further change in the performance of the algorithm. This

phenomena shows that larger values of nHM has a negative impact on the performance and does not necessarily improve

the quality of solutions. In particular, for larger values the fitness becomes progressively worse.

Harmony memory consideration rate (pHMCR). In Fig. 3, the second scenario is conducted to investigate the impact of

the harmony memory consideration rate (HMCR) on the performance of the HSOMap. As mentioned earlier, the HMCR

determines the rate of choosing one value from the historical values stored in the H, which is referred to as exploitation.

The larger the HMCR is, the less exploration will be achieved and the algorithm further relies on the stored values in the

harmony memory, which potentially leads the algorithm to become stuck in a local optimum. On the other hand, choosing

an HMCR that is too small will decrease the algorithm efficiency, and the algorithm behaves like a pure random search, with

less help from the historical data stored in the memory. As it can be seen in Fig. 3, the fitness value has a downward trend.

It means that selecting an HMCR value that is large here could improve the performance, since it relies more on historical

data preserved inside the harmony memory. It also indicates that the historical data are effective enough in guiding the

process to find the best possible solution. Most of the published HS-based applications such as [19,20] have used a range of

values between 0.5 and 0.95 for the HMCR, and our results show that the HSOMap attains the best performance when the

HMCR is set to 0.98.

Pitch adjusting rate (pPAR). In the third set of experiments, as shown in Table 4, the HMCR and the HMS are set to 0.98

and 100, respectively, and the fitness of the algorithm for different values of the pitch adjusting rate (PAR) is evaluated. As

indicated in Fig. 4, the performance of the HSoMap has not been affected significantly as the PAR values increase or decrease

in the specified range. In other words, this interval is reliable enough in terms of selecting different values, resulting in the

same or very similar fitness values. We note that for values smaller or larger than the mentioned range, the quality of

solutions are significantly worse.

Number of improvisations (nG). In the last set of the experiments, as shown in Table 4, the suitable value for the number

of improvisations is determined. The status of the candidate solutions in the harmony memory H during the run is studied

to help us to observe the behavior of the H and to decide the suitable maximum number of improvisations. It is noted

that a significant decrease takes place in the objective function values during the first 150 iterations. Within 150 and 300

iterations, the amount of change becomes very small. After 230 iterations there is no improvement at all in all instances.

All that leads us to choose the number of iterations to be 300.

Based on the results of the sensitivity analysis of parameters discussed above, the parameters in the HSOMap algorithm

are assigned as follows: the size of the harmony memory is set to 100, the p and the p probabilities are set to 

HMCR PAR
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Fig. 4. The performance of the HSOMap algorithm for different values of the pitch adjusting rate (PAR) on the 101 data set corresponding to Scenario (III)

in Table 4.

Table 5

The configuration of the parameters for the conducted experiments, ob-

tained by fine-tuning the parameters for different settings.

Parameter Value

# of improvisations (nG) 300

Harmony memory size (nHM) 100

Harmony memory consideration rate (pHMCR) 0.98

Pitch adjusting rate (pPAR) 0.05

Table 6

The best achievable fitness value for the HSOMap algorithm

on the 101 data set for the different number of improvisa-

tion steps corresponding to Scenario (IV) in Table 4.

# of improvisations (nG) Fitness

Initial values 0.7650

10 0.7310

50 0.5000

100 0.2840

150 0.0730

200 0.0700

250 0.0698

300 0.0697

 

 

0.98 and 0.05, respectively, and the maximum number of iterations is set to 300. The value of dynamic parameters are

summarized in Table 5. We note that the HSOMap algorithm is highly adjustable via its parameters and can be tuned to

perform well on specific problems in terms of both precision and recall quality measures Table 6.

7.4. The performance of the HSOMap on different data sets

Now we turn to investigating the performance of the proposed algorithm on 1XX, 2XX, and 3XX test cases. The aver-

age precision, recall and F-measure values with respect to a given reference alignment obtained for each group using the

HSOMap are reported in Fig. 5. The results in Fig. 5 refer to the average alignment found by the HSOMap algorithm after the 
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Fig. 5. The performance of the HSOMap on the OAEI-08 benchmark test suite (i.e., 1XX, 2XX, 3XX) measured in terms of precision, recall, and F-measure

averaged over independent runs of the algorithm.

 

 

given number of iterations. Since the HSOMap is a meta-heuristic search algorithm, it is non-deterministic, and as a result,

on a set of independent runs the quality of the results in the alignments will be subject to slight vacillations.

Referring to Fig. 5, we can see that for many of the test cases in the benchmark ontologies, the HSOMap algorithm could

provide reasonably good solutions. The HSOMap obtained the best results on test case 1XX. Since there is good lexical and

structural information in 1XX, the HSOMap performs perfectly on this test case. This test gets a precision value of around

97% and a recall value of 100%. In test case 2XX the results are not as positive as in test case 1XX. The quality of the

established alignments decreases with the decreasing number of features to exploit. Our results show where the lexical and

the linguistic information are suppressed from the target ontology, such as in 201 and 202, where the HSOMap has variant

behavior. Though the precision and recall results indicate that the alignments extracted by the HSOMap are not completely

different from the reference, but they are, in fact, rather close. We have obtained good results in test cases #201–210 and

#221–247 in comparison to test cases #248–266. The reason is that in test cases #201–210 and #221–247 the source and

target ontologies have similar hierarchy structures and good lexical information, respectively. In test cases #248–266 which

have poor lexical and structural information we have acquired the worst results. As the main focus of the HSOMaps is based

on lexical and linguistic information, in a situation where the structure information of the target ontologies is changed in

test cases #221–247, the results are similar to the 1XX tests. Test case 3XX has four real ontologies, as the results show that

the proposed algorithm exhibits a good performance for this test case as well.

7.5. The effectiveness of the aggregation method

The fact that different similarities work well in different situations motivates us to investigate a new measure that can

estimate the quality of each similarity so that we can aggregate them according to each one’s individual characteristic.

We performed experiments to test the effect of our proposed aggregation algorithm. Table 7 shows the results of these

experiments. As shown in Table 7, the approach that is used in the aggregation selection can be effective in the performance

of ontology mapping, and as it noted, using our proposed aggregation selection method can improve the performance of the

HSOMap.  
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Table 7

The performance of different similarity aggregation strategies in terms of precision and recall.

HSOMap+ harmonic-mean weighted aggregation HSOMap+ weighted average aggregation

Test set Precision Recall Preision. Recall

1XX 0.97 1 0.95 1

2XX 0.66 0.72 0.66 0.61

3XX 0.71 0.54 0.49 0.35

Average 0.77 0.75 0.70 0.65

Fig. 6. The convergence rate of the HSOMap and the MapPSO algorithms in test case #101 measured in terms of fitness.

 

 

7.6. Comparison with other evolutionary based ontology mapping algorithms

As mentioned earlier, any successful meta-heuristic algorithm requires a good balance between two important, seemingly

opposite, components: exploration and exploitation. If the exploitation (a.k.a. intensification) rate is high, only a fraction of

solution space might be visited, and there is a risk of being trapped in a local optimum. If the exploration (a.k.a. diversifi-

cation) rate is set to be high, the algorithm behaves like a random process in the solution space and converges too slowly.

In this part of the experiments, we aim at comparing the behavior of evolutionary based ontology mapping algorithms.

To accomplish this goal, two different sets of experiments have been conducted. In the first set, the convergence rate of

different evolutionary based ontology mapping algorithms is examined. Then, we investigate how the quality of obtained

mapping by different algorithms differ from each other. In relation to other evolutionary based algorithms, the most out-

standing tool is the MapPSO algorithm which is a particle swarm based approach for solving the ontology mapping problem
5. In this algorithm the ontology mapping problem is modeled as a global optimization of a mapping between two on-

tologies and in this regard is similar to the HSOMap. However, instead of the HS algorithm, the PSO algorithm is used to

achieve a quasi-optimal solution. The two algorithms also significantly depart in exploiting side information and modeling

the objective function.

In this part of the experiments, the convergence of the evolutionary based algorithms will be investigated. Convergence is

the amount of time required by a procedure to reach its best possible solution. The criterion for evaluating the algorithms is

their convergence rate to the optimal solution. Fig. 6 illustrates the convergence behaviors of the HSOMap and the MapPSO

algorithms on the test case 101 of the OAEI 2008 benchmark track in terms of the fitness function (mapping quality function

F ′(M(Os,Ot ))).
5 Please note that the HSOMap and the MapPSO are not comparable to existing genetic based ontology mappers such as the Genetics for Ontology

Alignments (GOAL) algorithm proposed in [40]. The reason is that the GOAL requires a reference alignment in order to evaluate its fitness function which

is not applicable to the setting addressed in the paper.  
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Fig. 7. The average precision of the MapPSO and the proposed HSOMap algorithm on different ontologies.

 

 

The horizontal axis shows the iteration number, and the vertical axis corresponds to the fitness value. For this test

case we have conducted 10 independent trials with randomly generated initialization, and the average value is recorded

to account for the stochastic nature of the algorithm. It can be observed that the mapping quality is continuously im-

proving throughout the iterations in both algorithms. Lower values of the fitness thereby indicate shorter distances and

therefore represent better solutions. Comparing the convergence behavior for the HSOMap and the MapPSO demonstrates

a slightly different convergence speed for both algorithms, but convergence could be observed for both the HSOMap and

the MapPSO.It is obvious from Fig. 6 that the HSOMap converges quickly towards the global minimum. Fig. 6 illustrates

that the reduction of the fitness value in the HSOMap follows a smooth curve from its initial vectors to the final optimum

solution and does not have a sharp move. The MapPSO demonstrates faster convergence in comparison to the HSOMap, and

reaches a stable state after about 120 iterations where no further improvements on the situation occur. In contrast, HSOMap

converges more slowly and reaches a stable state after about 150 iterations.

We now turn to comparing the quality of solutions obtained by two methods. The performance comparison between our

proposed algorithm with the MapPSO in all data sets, considering precision and recall as quality measures, is demonstrated

in Figs. 7 and 8, respectively. It can be inferred from the results of Figs. 7 and 8, the result obtained by the HSOMap is

significantly comparable to results obtained by the MapPSO.

From the results of these experiments, one can conclude that although the HSOMap and the MapPSO behave similarly

in many cases, in general, results obtained by the HSOMap are comparable to results obtained by the MapPSO. The phe-

nomenon may have its roots in the good exploitative-explorative balance of the HSOMap, the equipped fitness function

which measures the similarity from different perspectives, and its parallel nature. Proper parallelism usually leads to better

performance with higher efficiency. The good combination of parallelism with elitism as well as a fine balance of exploration

and exploitation is the key to the success of the the HSOMap algorithm.

7.7. Comparison to baseline methods

To demonstrate the superiority of the proposed algorithm, it is compared with the baseline algorithms discussed before.

We have compared the HSOMap with CIDER, SAMBO, GeRoMe, MapPSO, SPIDER, TaxoMap, and a few participants of the

OAEI-08 benchmark test suite. The results of applying these algorithms to the OAEI-08 benchmark test suite are available

in [8]. Note, however, that in some cases results published in the contest are only for parts of the ontologies, and thus, 



76 R. Forsati, M. Shamsfard / Information Sciences 342 (2016) 53–80

Fig. 8. The average recall of the HSOMap and the MapPSO algorithms on different ontologies.

 

 

may not indicate true performance for complete realistic ontologies. The comparison results of the matching quality of the

proposed algorithm and the other systems are presented in Figs. 9–11. These figures show the average precision and recall,

the harmonic average, and also the F-measure value of these algorithms on three test categories.

Fig. 9 presents the precision of mapping obtained by applying algorithms to different data sets. The most important

observation from the experimental results is that the HSOMap was not an overall winner with respect to precision accuracy.

Nevertheless, the SAMBO, CIDER and TaxoMap methods, which had better precision than the proposed algorithm, resulted

in a lower recall. As an example, the TaxoMap, which managed to reach a good precision in comparison to the HSOMap,

had the worst recall and F-measure values among all the algorithms. In fact, it has sacrificed the recall metric for obtaining

a better precision.

The performances of the algorithms considering the recall metric as the quality measure is shown in Fig. 10. By compar-

ing the results of different algorithms, it can be seen that the HSOMap has the best performance, which is a considerable

improvement in the domain of ontology mapping. The proposed algorithm has focused on achieving the best recall and also

managed to reach an adequate precision.

The performance of different algorithms considering the F-measure are shown in Fig. 11. As it can be observed from

the results for different algorithms, the HSOMap has a better F-measure value than most of the algorithms which indicates

that the proposed algorithm has reached a satisfying efficiency in comparison to theother algorithms. It can be noted from

Fig. 11 that the HSOMap outperformed the TaxoMap, MapPSO, Edna, SAMBO and GeRoMe and obtained a very close result

to the SPIDER considering the F-measure value.

Putting all the results together, we can conclude that the HSOMap algorithm is able to find a near-optimal solution for

ontology mapping in most cases. According to the results, our approach seems to be an accurate and efficient tool for this

task.

We now turn to better understand and relate the performance of the different algorithms to their main characteristics

outlined in Table 3. We also note that different algorithms perform differently on the test cases which indicates that the type

of data set, the richness of side information available in each data set, and the capability of each algorithm in exploiting the

information in mapping process significantly affects the performance of each algorithm. Therefore, our discussion is divided

in terms of the three test cases.  
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Fig. 9. The average precision of the HSOMap and the baseline methods participated in for the OAEI-08 campaign on 1XX, 2XX, and 3XX test cases.

 

 

Test 1XX. Since the TaxoMap algorithm only considers labels and hierarchical relations and only provides mappings for

concepts, the recall is low for test case 1XX, even for the reference alignment #101.

The CIDER method considers many features of ontologies and also focuses on the semantic description of the terms

in the corresponding ontologies which improve the results in some cases where this information is available. The CIDER

obtained a very high precision and recall ( ≈ 0.99) for this case of tests.

The SPIDER works the same as the CIDER with the difference that it considers non-equivalence mappings. The test set

1XX does not contain non-equivalence mappings in the reference alignment; therefore, it achieves similar results as the

CIDER algorithm for this type of tests.

The GeRoMe method achieved a very similar value for precision and recall in comparison to results of other algorithms,

where the precision was usually higher than recall. The GeRoMe achieves a high precision and recall for these test cases

just by using string matchers.

The MapPSO achieves precision values of around 0.9 and recall values of 1. No system had strictly lower performance

than the simple edit distance algorithm on labels (i.e., Edna) in all test cases. Each algorithm has its best score with the 1XX

test series. There is no particular order between the two other groups of test cases.

Test 2XX. It is more interesting to look at the 2XX series structure to distinguish the strengths of the different algorithms.

These tests are concerned with alternation on labels and hierarchies. More specifically, the group of tests in this category

were based on alternations on properties, instances and comments. We note that these alternations do not have any effect

on the results obtained by the TaxoMap since it ignores these descriptions. But the TaxoMap for the groups of tests in

this category where labels were suppressed or replaced by random string or translated to another language has produced

no mapping since the main focus of the TaxoMap is on the linguistic features of the label of concepts. For test case #202

where all names and comments are unavailable, the TaxoMap performs worst in this group of tests. The precision of most

remaining tests was very high.

The CIDER algorithm obtained a result with a low recall in this category of experiment. In this category of tests, the

CIDER can not provide results for benchmark cases #202 and #248-#266 (in which ontology terms are described with non

expressive texts), because the CIDER does not deal with ontologies in which syntax is not significant at all (these cases

present a total absence or randomization of labels and comments). Consequently, it has a result with a low recall in this

category, as the benchmark test unfavors methods that are not based on graph structure analysis (or similar techniques). It

obtained better precision than recall in the benchmark test.  
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Fig. 10. The average recall of the HSOMap and the baseline methods participated in for the OAEI-08 campaign on 1XX, 2XX, and 3XX test cases.

Fig. 11. The F-measure values of the HSOMap and the baseline methods.
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The SPIDER has the same performance as the CIDER algorithm with the difference that it considers non-equivalence

mappings. The tests of this set do not make sense for the Scarlet module of SPIDER as a comparison is sought between

modified versions of the same ontology; therefore, it has the same results as the CIDER for this type of tests.

For most of the tests in this category, the performance of GeRoMe was satisfying, but for some tasks, especially those

without any linguistic information, it produced disappointing results. This is due to the fact that the GeRoMe does not take

into account the overall structure of the ontology. For example, in the case of #202, where no linguistic information at all

was available, it produced very low results.

The SAMBO uses a general thesaurus, i.e., WordNet, to enhance the similarity measure by looking up the hypernym rela-

tionships of the pairs of words in WordNet and obtained good results in many cases. In this category of tests, the MapPSO

performs worst for benchmark cases #201 and #202 in which all names and comments of ontologies are unavailable, as the

main focus of the MapPSO is based on linguistic features, such as string distance and WordNet distance. The results of these

test cases are not as positive, as the quality of the alignment decreases with the number of features that provide linguistic

features to exploit.

Test 3XX. The evaluations with real ontologies also show the recall of the TaxoMap is low because it does not take into

account properties and instances and only generates mappings between concepts. The real tests also show that the precision

is high.

The results on real ontologies show the very good behavior of the CIDER in terms of precision (i.e., 0.9), while keeping

an acceptable recall (i.e, 0.73).

The test set 3XX contains a few non-equivalence mappings in the reference alignment; therefore, it is a good candidate

for evaluating the SPIDER system. The results of the SPIDER show that while recall increases for those cases where the

reference alignments also contain subsumption relations when compared to the CIDER, precision is heavily affected.

For test cases #301 and #304, GeRoMe produced quite reasonable results by using the WordNet matcher for detecting

synonyms. Test case #303 could not be processed by GeRoeE as there was a problem with importing this ontology into

the generic representation of GeRoMe. The precision and recall values for the MapPSO algorithm vary between 0 and 0.6 in

these types of test cases, and no uniform results can be derived.

8. Conclusions

We have studied the combinatorial ontology mapping problem and developed a general framework to effectively find a

near-optimal matching between two input ontologies. The proposed HSOMap method is a symbiosis between the combi-

natorial ontology mapping techniques and the harmony search optimization algorithm. Roughly speaking, the combinatorial

ontology mapping problem is modeled as a global optimization problem, and the harmony search algorithm is applied to

extract an approximate optimal solution. The main ingredient of the method is to exploit different similarity measures to

devise an effective fitness function to guide the optimization process and balance the exploration and exploitation in search-

ing for the optimal solution. We have also modified the pitch adjusting process of the harmony search algorithm to adapt

it to the discrete nature of the ontology mapping problem. We conducted a set of experiments to analyze and evaluate

the performance of the HSOMap algorithm on benchmark ontologies. The experimental results revealed that the proposed

algorithm has good performance and can be used in a single goal-driven way versus using composite mapping algorithms.

There are several directions in which this work could be extended. We also believe further investigation is needed into

this problem. We plan to study a multi-objective strategy in order to avoid unwanted deviations from precision and recall

values. Another very important research direction would be to design more scalable algorithms to be able to map large-scale

ontologies. Also, it is worth investigating whether the idea of exploiting side information about ontological entities could

be further improved to better take advantage of external sources of knowledge about ontologies. One direction would be to

utilize machine learning techniques, and in particular, distance metric learning to learn a unified Mahalanobis distance to

measure the similarity of ontological entities instead of aggregating different similarity measures in a linear fashion.
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